3,751 research outputs found

    Entropy Change through Rayleigh-B\'enard Convective Transition with Rigid Boundaries

    Full text link
    The previous investigation on Rayleigh-B\'enard convection of a dilute classical gas [T. Kita: J. Phys. Soc. Jpn. {\bf 75} (2006) 124005] is extended to calculate entropy change of the convective transition with the rigid boundaries. We obtain results qualitatively similar to those of the stress-free boundaries. Above the critical Rayleigh number, the roll convection is realized among possible steady states with periodic structures, carrying the highest entropy as a function of macroscopic mechanical variables.Comment: 5 pages, 4 figure

    Gap Anisotropy and de Haas-van Alphen Effect in Type-II Superconductors

    Full text link
    We present a theoretical study on the de Haas-van Alphen (dHvA) oscillation in the vortex state of type-II superconductors, with a special focus on the connection between the gap anisotropy and the oscillation damping. Numerical calculations for three different gap structures clearly indicate that the average gap along extremal orbits is relevant for the magnitude of the extra damping, thereby providing a support for experimental efforts to probe gap anisotropy through the dHvA signal. We also derive an analytic formula for the extra damping which gives a good fit to the numerical results.Comment: 5 pages, 1 figure, changes in Introductio

    Nonbipartite Dulmage-Mendelsohn Decomposition for Berge Duality

    Full text link
    The Dulmage-Mendelsohn decomposition is a classical canonical decomposition in matching theory applicable for bipartite graphs, and is famous not only for its application in the field of matrix computation, but also for providing a prototypal structure in matroidal optimization theory. The Dulmage-Mendelsohn decomposition is stated and proved using the two color classes, and therefore generalizing this decomposition for nonbipartite graphs has been a difficult task. In this paper, we obtain a new canonical decomposition that is a generalization of the Dulmage-Mendelsohn decomposition for arbitrary graphs, using a recently introduced tool in matching theory, the basilica decomposition. Our result enables us to understand all known canonical decompositions in a unified way. Furthermore, we apply our result to derive a new theorem regarding barriers. The duality theorem for the maximum matching problem is the celebrated Berge formula, in which dual optimizers are known as barriers. Several results regarding maximal barriers have been derived by known canonical decompositions, however no characterization has been known for general graphs. In this paper, we provide a characterization of the family of maximal barriers in general graphs, in which the known results are developed and unified

    Unconventional Vortices and Phase Transitions in Rapidly Rotating Superfluid ^{3}He

    Get PDF
    This paper studies vortex-lattice phases of rapidly rotating superfluid ^3He based on the Ginzburg-Landau free-energy functional. To identify stable phases in the p-Omega plane (p: pressure; Omega: angular velocity), the functional is minimized with the Landau-level expansion method using up to 3000 Landau levels. This system can sustain various exotic vortices by either (i) shifting vortex cores among different components or (ii) filling in cores with components not used in the bulk. In addition, the phase near the upper critical angular velocity Omega_{c2} is neither the A nor B phases, but the polar state with the smallest superfluid density as already shown by Schopohl. Thus, multiple phases are anticipated to exist in the p-Omega plane. Six different phases are found in the present calculation performed over 0.0001 Omega_{c2} <= Omega <= Omega_{c2}, where Omega_{c2} is of order (1- T/T_c) times 10^{7} rad/s. It is shown that the double-core vortex experimentally found in the B phase originates from the conventional hexagonal lattice of the polar state near Omega_{c2} via (i) a phase composed of interpenetrating polar and Scharnberg-Klemm sublattices; (ii) the A-phase mixed-twist lattice with polar cores; (iii) the normal-core lattice found in the isolated-vortex calculation by Ohmi, Tsuneto, and Fujita; and (iv) the A-phase-core vortex discovered in another isolated-vortex calculation by Salomaa and Volovik. It is predicted that the double-core vortex will disappear completely in the experimental p-T phase diagram to be replaced by the A-phase-core vortex for Omega >~ 10^{3} ~ 10^{4} rad/s. C programs to minimize a single-component Ginzburg-Landau functional are available at {http://phys.sci.hokudai.ac.jp/~kita/index-e.html}.Comment: 13 pages, 9 figure

    Theory of Flux-Flow Resistivity near Hc2H_{c2} for s-wave Type-II Superconductors

    Full text link
    This paper presents a microscopic calculation of the flux-flow resistivity ρf\rho_{f} for s-wave type-II superconductors with arbitrary impurity concentrations near the upper critical field Hc2H_{c2}. It is found that, as the mean free path ll becomes longer, ρf\rho_{f} increases gradually from the dirty-limit result of Thompson [Phys. Rev. B{\bf 1}, 327 (1970)] and Takayama and Ebisawa [Prog. Theor. Phys. {\bf 44}, 1450 (1970)]. The limiting behaviors suggest that ρf(H)\rho_{f}(H) at low temperatures may change from convex downward to upward as ll increases, thus deviating substantially from the linear dependence ρfH/Hc2\rho_{f}\propto H/H_{c2} predicted by the Bardeen-Stephen theory [Phys. Rev. {\bf 140}, A1197 (1965)]

    Contact resistivity and current flow path at metal/graphene contact

    Full text link
    The contact properties between metal and graphene were examined. The electrical measurement on a multiprobe device with different contact areas revealed that the current flow preferentially entered graphene at the edge of the contact metal. The analysis using the cross-bridge Kelvin structure (CBK) suggested that a transition from the edge conduction to area conduction occurred for a contact length shorter than the transfer length of ~1 micron. The contact resistivity for Ni was measured as ~5*10-6 Ohmcm2 using the CBK. A simple calculation suggests that a contact resistivity less than 10-9 Ohmcm2 is required for miniaturized graphene field effect transistors

    Oxygen isotope systematics and Al-Mg chronology of chondrules: Implications to protoplanetary disk evolution

    Get PDF
    第6回極域科学シンポジウム[OA] 南極隕石11月17日(火) 国立国語研究所 2階 講

    Properties of Nambu-Goldstone Bosons in a Single-Component Bose-Einstein Condensate

    Full text link
    We theoretically study the properties of Nambu-Goldstone bosons in an interacting single-component Bose-Einstein condensate (BEC). We first point out that the proofs of Goldstone's theorem by Goldstone, et al. [Phys. Rev. {\bf 127} (1962) 965] may be relevant to distinct massless modes of the BEC: whereas the first proof deals with the poles of the single-particle Green's function G^\hat{G}, the second one concerns those of the two-particle Green's function. Thus, there may be multiple Nambu-Goldstone bosons even in the single-component BEC with broken U(1) symmetry. The second mode turns out to have an infinite lifetime in the long-wavelength limit in agreement with the conventional viewpoint. In contrast, the first mode from G^\hat{G}, i.e., the Bogoliubov mode in the weak-coupling regime, is shown to be a "bubbling" mode fluctuating temporally out of and back into the condensate. The substantial lifetime originates from an "improper" structure of the self-energy inherent in the BEC, which has been overlooked so far and will be elucidated here, and removes various infrared divergences pointed out previously.Comment: 9 pages, 6 gigure
    corecore